87[K].-Minoru Siotani \& Masaru Ozäwa, "Tables for testing the homogeneity of k independent binomial experiments on a certain event based on the range," Ann. Inst. Stat. Math., v. 10, 1958, p. 47-63.
Let k series of N trials each of a certain event be performed with the outcome of ν_{i} occurrences in the i-th series in which the fixed probability of occurrence was $p_{i}, i=1,2, \cdots, k$. To test the null hypothesis of homogeneity:

$$
p_{1}=p_{2}=\cdots=p_{k}=p
$$

Siotani had previously proposed the statistic, $R_{k}(N, p)$, the range of the $\nu_{i}[1]$. The tables in this paper give for $N=10(1) 20,22,25,27,30 ; k=2(1) 15$;

$$
p=.1(.1) .5
$$

$\alpha=.001, .005, .01(.01) .06, .08, .1$, the greatest r_{k} for which

$$
\operatorname{Pr}\left\{R_{k}(N, p) \geqq r_{k}\right\}<\alpha+.0005
$$

The cases in which for the r_{k} given, $\alpha<\operatorname{Pr}\left\{R_{k}(N, p) \geqq r_{k}\right\}<\alpha+.0005$ or

$$
\alpha-.005<\operatorname{Pr}\left\{R_{k}(N, p) \geqq r_{k}\right\}<\alpha
$$

are indicated by attaching $\mathrm{a}+$ or a - respectively to the value of r_{k}.

> C. C. Craig

University of Michigan
Ann Arbor, Michigan

1. Minoru Siotani, "Order statistics for discrete case with a numerical application to the binomial distribution," Ann. Inst. Stat. Math., v. 8, 1956, p. 95-104.
$\mathbf{8 8}[\mathrm{K}]$.-P. N. Somerville, "Tables for obtaining non-parametric tolerance limits," Ann. Math. Stat., v. 29, 1958, p. 599-601.
Let P be the fraction of a population having a continuous but unknown distribution function that lies between the r-th smallest and the s-th largest values in a random sample of n drawn from that population. Then for any $r, s \geqq 0$ such that $r+s=m$, Table I gives the largest value of m such that with confidence coefficient $\geqq \gamma$ we may assert that $100 P \%$ of the population lies in the interval (r, s) for $\gamma=.5, .75, .9, .95, .99$ and $n=50(5) 100(10) 150,170,200(100) 1000$. Table II gives γ to 2D for the assertion that $100 \mathrm{P} \%$ of the population lies within the range, $(r, s=1)$, in a sample of n for $P=.5, .75, .9, .95, .99$ and

$$
n=3(1) 20,25,30(10) 100 .
$$

C. C. Craig

University of Michigan
Ann Arbor, Michigan
$\mathbf{8 9}[\mathrm{K}]$.-G. P. Steck, "A table for computing trivariate normal probabilities," Ann. Math. Stat., v. 29, 1958, p. 780-800.
Let X, Y, Z be standardized random variables obeying a trivariate normal dis-

